Comprehensive Pressure Quantity Survey for Investigating the Effects of Booster Fans in a Trona Mine

Arash Habibi Richard Kramer and Stewart Gillies

SME 2013, Denver CO

Outline:

- 1. Introduction
- 2. Problem Statement
- 3. Ventilation Survey, Model
- 4. Ventilation Model (Heat Simulation)
- 5. Present Ventilation Model Improvements (15 scenarios)
- 6. Future Model (2013, 2018)
- 7. Conclusion
- 8. Acknowledgement

Introduction

• The ventilation survey was conducted in an underground

longwall Trona mine. The mine is relatively shallow and categorized as a gassy mine.

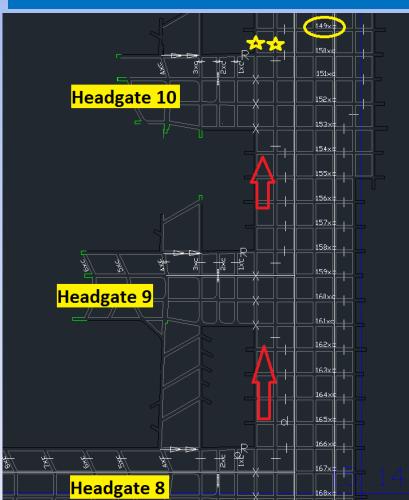
- Annual Production 4.5 MT.
- Three surface based axial fans ventilate the mine.
- Two Development panels (Bore Miner 4.8m by 2.4m) and a Longwall (LW).

Problem statement

Minimum Air requirement:

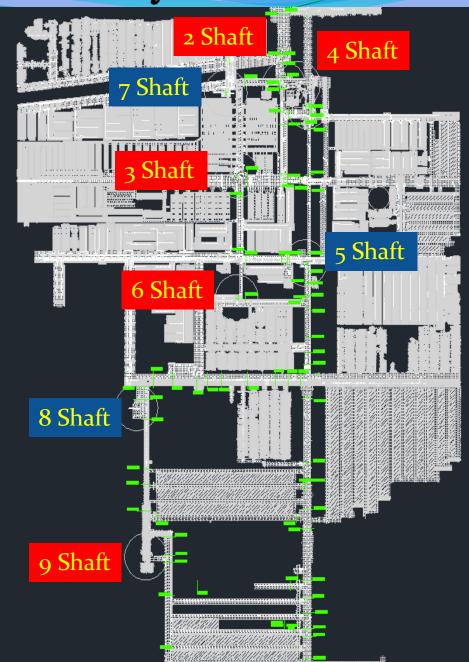
Two active development (25 m³/s* 2); 50 m³/s
 LW; 50 m³/s

Total Air : $100 \text{ m}^3/\text{s}$

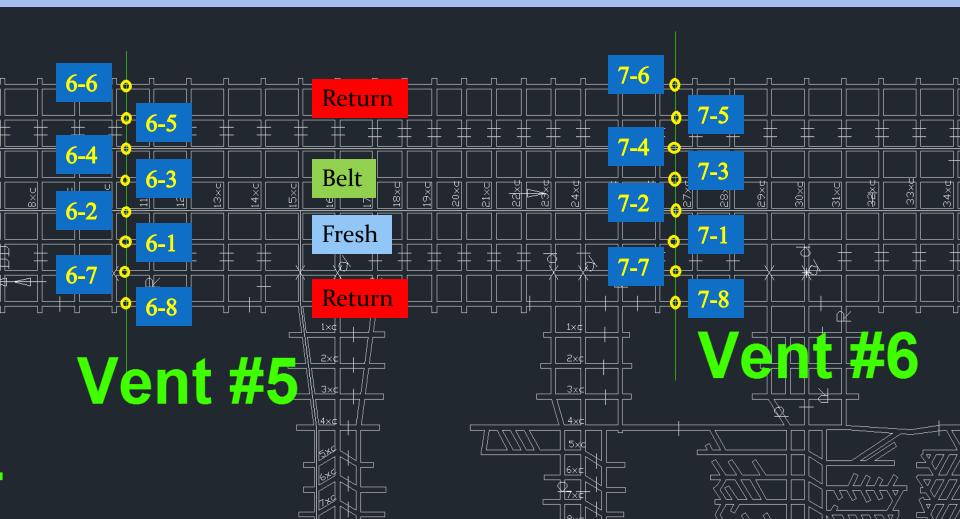

• PQ results show that was also determined that the 6 shaft is exhausting at maximum capacity (Stoppings 65 xc).

Problem Statement Cont'

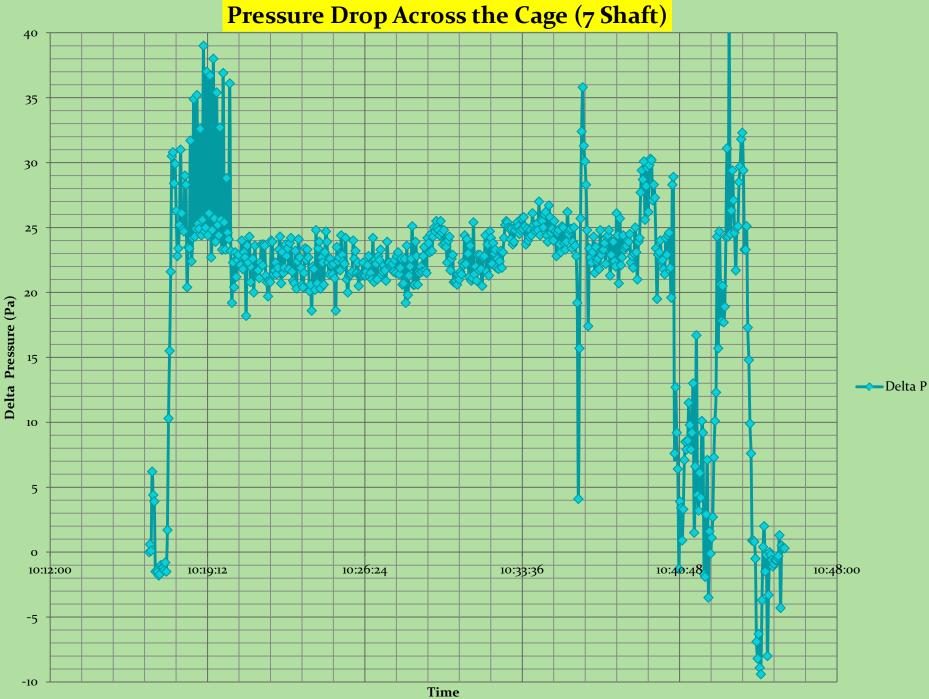
• The air total pressure (TP) drops by the time it reaches to the development panels.


• At this point, the air gets drawn towards 9 shaft due to less resistance and distance comparing to 6 shaft.

• Regulating the 9 shaft might **NOT** be an option since it reduces the total airflow Optimal solution: Cheapest way to increase/create the differential pressure upstream of bore miner sections


Ventilation Survey

- 85 ventilation Stations.
- Survey included:
- i. Absolute Pressure
- ii. Temperature
- iii. Velocity Readings
- iv. Area (dimensions)
- v. Other characteristics


Ventilation Survey Cont'

Leapfrogging method: Both instruments are taken underground and read simultaneously at adjacent stations with the aid of synchronized watches.

Instrumetns:

Unit	Model	Specification
Pressure	Paroscientific 765-16B	Resolution 0.0001% (<1 microbar)
Transducer		Accuracy ±0.08 hPa or better
		Stabilityo.1 hPa /year or better
		Range 500-1100 hPa (14.7-32.5 in Hg)
Digital Psychrometer	SAM 9900DW	Temperature Range: -4 to +122°F (-20 to +50°C)
		Temperature Accuracy: ±1.8°F (±1°C)
		RH Range: o to 100% RH
		RH Accuracy: ±3% RH at +77°F within
		10 to 90% RH
		±4% RH at all other ranges
		Resolution: +1°F/C, 1% RH
		Response Time: Approximately 60 seconds

P-Q Survey Analysis Results

									ΚV	alue (1	10^(-10))lb.mi	n²/ft ⁴))	I	K Valu	e (Ns	s^2/m^4)					
						Airv	ways	5			65					0.0	0122	21					
9	Home		Page Layout	Formu	las Data	Review Vie	w	_	_	Vent	survey.xlsx - N	Aicrosoft Excel	_	_	_	_	_	_	_	_	Ċ	- 0	×
Paste	➢ Cut	Painter	I <u>U</u> F	• 14 •		■ = 🗞 ■ I I I II Alignn		ext & Center 🕶 🕞	Custom \$ - % Num	• • • • • • • • • • • • • • • • • • •	Formatting	I Format	Normal Neutral	Bad Cale Styles	l culation	Good Check	Cell	▲ ▼ ■ Insert ▼	Delete For Cells	🖽 🛛 🗔 Fi	II v Eart D. Ei		
	D4 B	- (e	f _x	3 Main E	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ.	AR	AS	AT	AU	AV	AW	× AX
2	Leapfrog		rvey	P	Saturation	Saturation	Vapor	Humidit	ty₽%	Dew P	oint(F)	H,		v	v	Q		R	l		к		
3 #	Date	Station	(Kpa)	(Pa)	Ps (Kpa)	Ps' (kpa)	Pv (Kpa)	Calculated	Measured	Calculated	Measured	(In.Wg)	(Pa)	(Ib/ft ³)	(kg/m ³)	CFM	(m ³ /s)	(Ns²/m ⁸)	PU	(Ns ² /m ⁴)	10^(-10)lb.min²/ft4	Air Type	Ŧ
323 324 325	8/16/2012	<u>26 1/2_1</u> 6 1/2_1	-0.033	-33	2.669	1.589	1.0579	39.6	37.1	50.5	49.6	0.027	6.74	0.063	1.0087	27800 24960	13.1 11.8	0.03653	0.03266	0.00394	21.24	Fresh Fresh	49
326 327	8/16/2012	<u>22 1/2_1</u> 1/2_1	0.0037	3.7	2.669	1.492	0.8989	33.7	31.2	46.2	44.9	0.009	2.33	0.063	1.0094	22000 19500	10.4 9.2	0.02040	0.01824	0.00143	7.71	Fresh Fresh	50
328 329	1 8/16/2012	1/2_1 8 1/2_1	-0.0139	-13.9	2.642	1.469	0.8705	32.9	30.1	45.6	43.9	0.013	3.28	0.063	1.0107	35900 69477	16.9 32.8	0.00447	0.00400	0.00158	8.52	Fresh Fresh	51
330 331 332	2 8/16/2012	18 1/2_1 60 1/2_1	-0.0042	-4.2	2.761	1.320	0.5715	20.7	18.1	33.7	32.5	0.296	73.72	0.063	1.0088	51400 37000	24.3 17.5	0.14242	0.12735	0.01000	53.91	Fresh Fresh	52
333 5 3 334	8/16/2012	<u>10 1/2_1</u> 39 1/2_1	-0.0781	-78.1	2.650	1.464	0.8598	32.4	27.9	45.2	39.6	0.058	14.39	0.063	1.0104	22700 9500	10.7 4.5	0.20991	0.18770	0.00851	45.87	Fresh Fresh	53
335 336	4 8/16/2012	23 1/2_1 56 1/2_1	0.2631	263.1	2.814	1.342	0.5897	21.0	19.3	34.0	34.1	0.374	93.14	0.063	1.0054	81280 25300	38.4 11.9	0.12337	0.11032	0.00388	20.92	Fresh Fresh	54
337 338	5 8/16/2012	3 1/2_3 56 1/2_4	0.1348	134.8	2.822	1.352	0.6056	21.5	18.9	34.6	33.8	0.139	34.56	0.063	1.0045	31500 26500	14.9 12.5	0.15444	0.13810	0.00533	28.75	Fresh Fresh	55
339 340	5 8/16/2012	69 1/2_1 181 1/2_1	0.2944	294.4	2.733	1.622	1.0888	39.8	37.2	50.7	49.6	1.714	426.41	0.063	1.0016	120250 44980	56.8 21.2	0.23413	0.20936	0.00703	37.90	Fresh Fresh	56
341 342	7 8/16/2012	69 1/2_4 181 1/2_4	0.2956	295.6	2.623	1.658	1.1895	45.4	42.8	54.2	53.0	1.708	424.91	0.063	1.0038	99840 46150	47.1 21.8	0.29951	0.26782	0.00879	47.37	Fresh Fresh	57
2/12 4	N Raw Da	ata Anal y	ysis Form	/ Results	(%)		[]							1 4		74750	35.3				<u>ш</u>	·	► ►

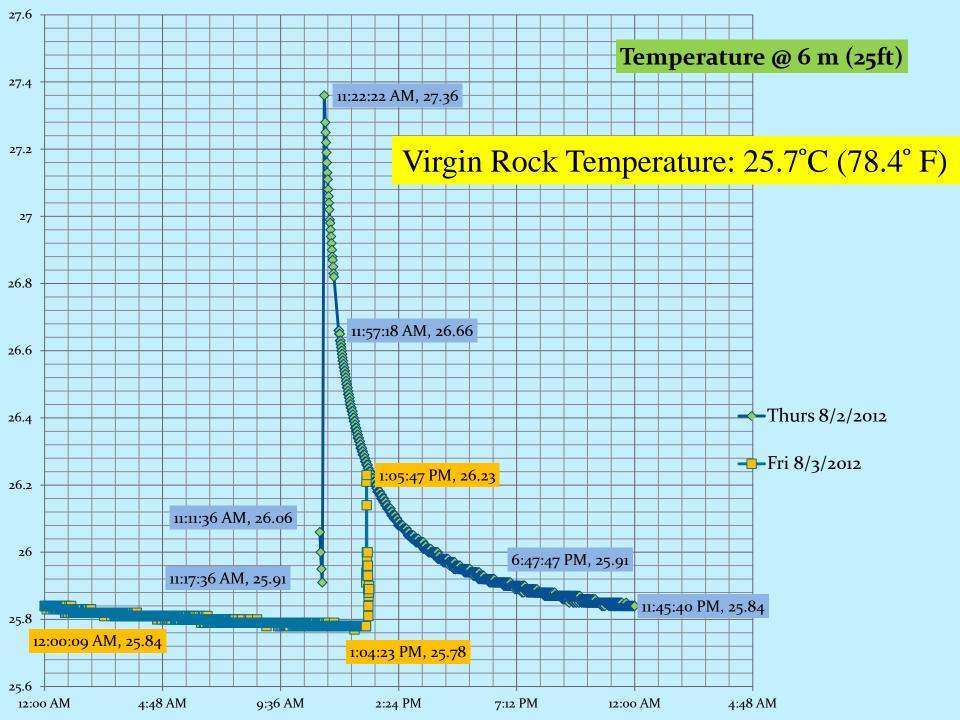
Ready

J

-+

Ventsim Visual Model

• The model has been built based on the mine existed AutoCAD model.


• The model consists of 26,725 airways with the total

length of 586 miles.

• The Ventsim results were in 8% accuracy of the weekly air readings.

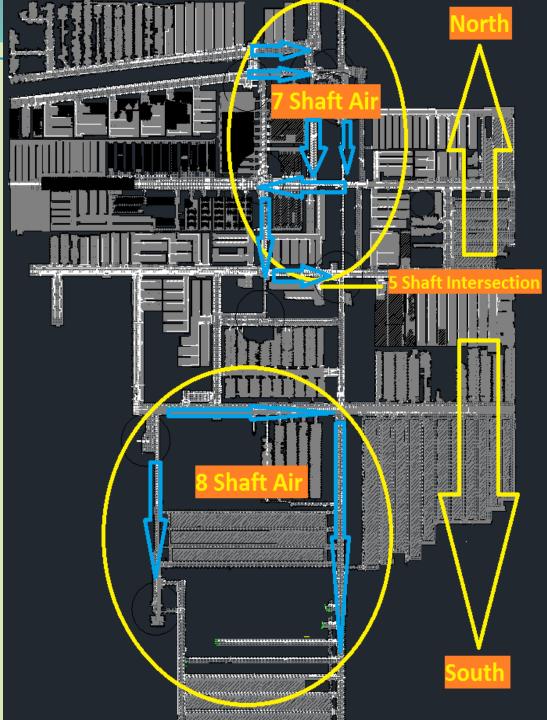
Heat Sources

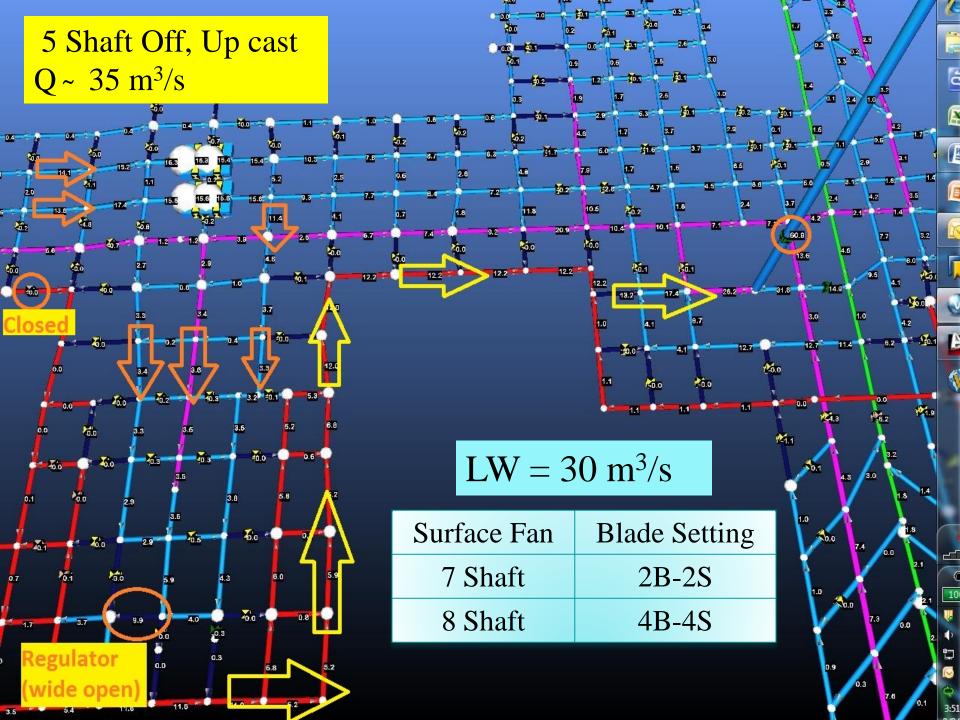
#	Pump Station	Power (hp)	Heat (Btu/min)	Kilocalories/hr	Kilojoules/hr
1	5 Shaft	1200	53,569	769,423	3,219,266
2	578	100	4,464	64,118	268,270
3	349	700	31,248	448,830	1,877,905
4	Bypass	350	15,624	224,415	938,952
5	3 NE	350	15,624	224,415	938,952
6	2 NW	150	6,696	96,177	402,405
7	7 S 5 Shaft :				<mark>0,678</mark>
8	3 S				73,087
9	3 <mark>Warm up</mark>	767,870 Lite	r <mark>s (202,859 gal)</mark> o	f water by 1°C (1.5	<mark>5°F). </mark> 5,339
10	8 Shaft	100	4,464	64,118	268,270
11	473	100	4,464	64,118	268,270
12	LW 4 Panel	40	1,786	25,647	107,307
13	LW pump	100	4,464	64,118	268,270
14	Fresh Water 3 ME	100	4,464	64,118	268,270
15	1 NE	30	1,339	19,235	80,479
	Total	4095	182,811	2,625,658	10,985,753

Natural Ventilation Pressure

All Fans Off	2	Input Surface	e temp: 5.5°C (42° F)
Shoft	Ventsim Visual S	Experimental	
Shaft	Air Direction	Quantity (kcfm)	Results
1 Shaft	Down cast	4	Down cast
2 Shaft	Down cast	11.8	Down cast
3 Shaft	Down cast	12.3	Down cast
4 Shaft	Down cast	45	Down cast
5 Shaft	Up cast	42	Up cast
6 Shaft	Down cast	32.8	Down cast
7 Shaft	Up cast	38.7	Up cast
8 Shaft	Up cast	45.5	Up cast
9 Shaft	Down cast	8	Down cast

Scenario 1, 5 Shaft Fan Off

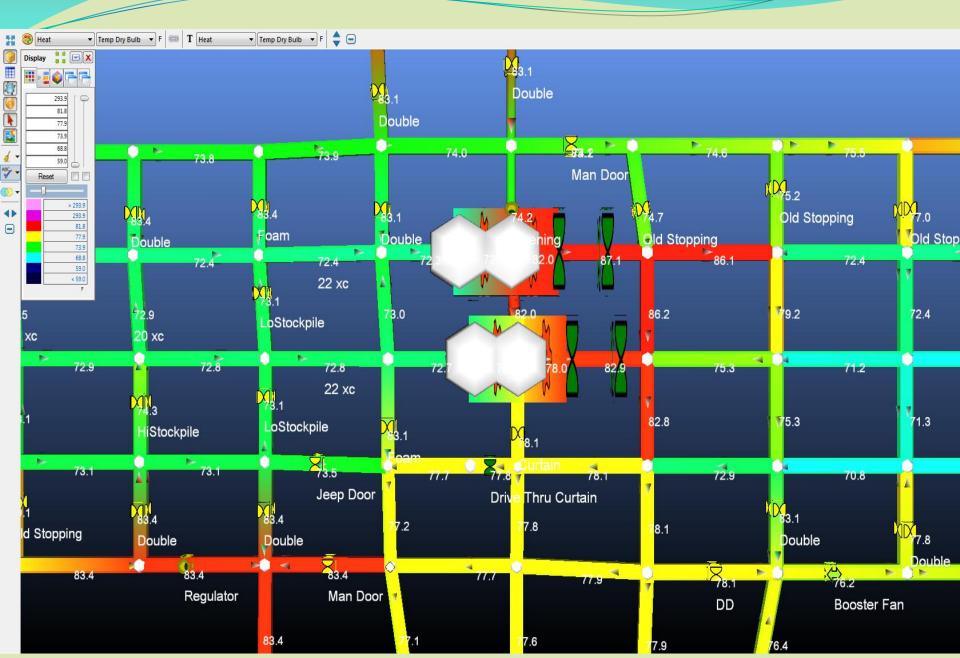

□Ventilate the entire mine using 7 and 8 shaft surface fans.

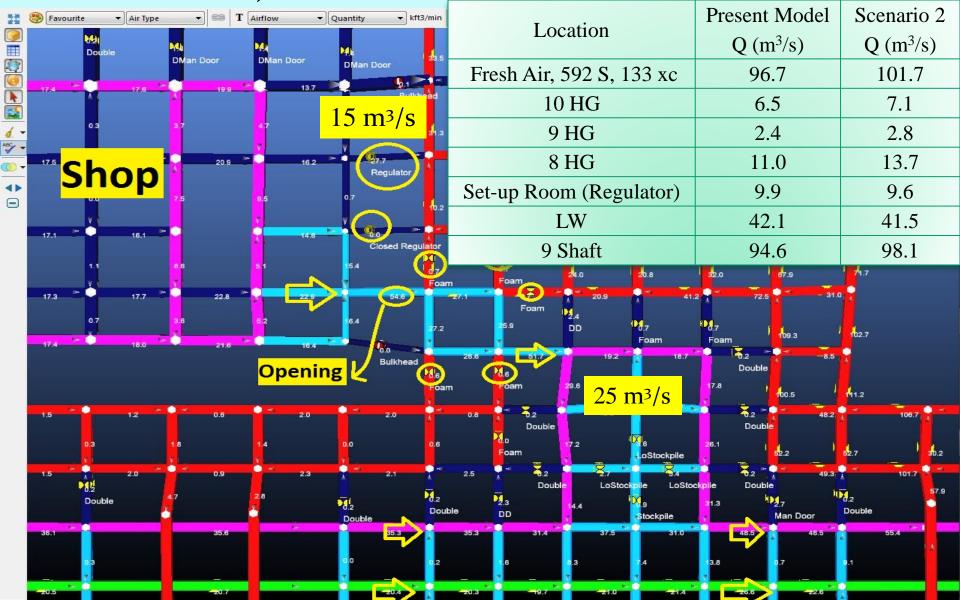

The mine has been divided in two regions:

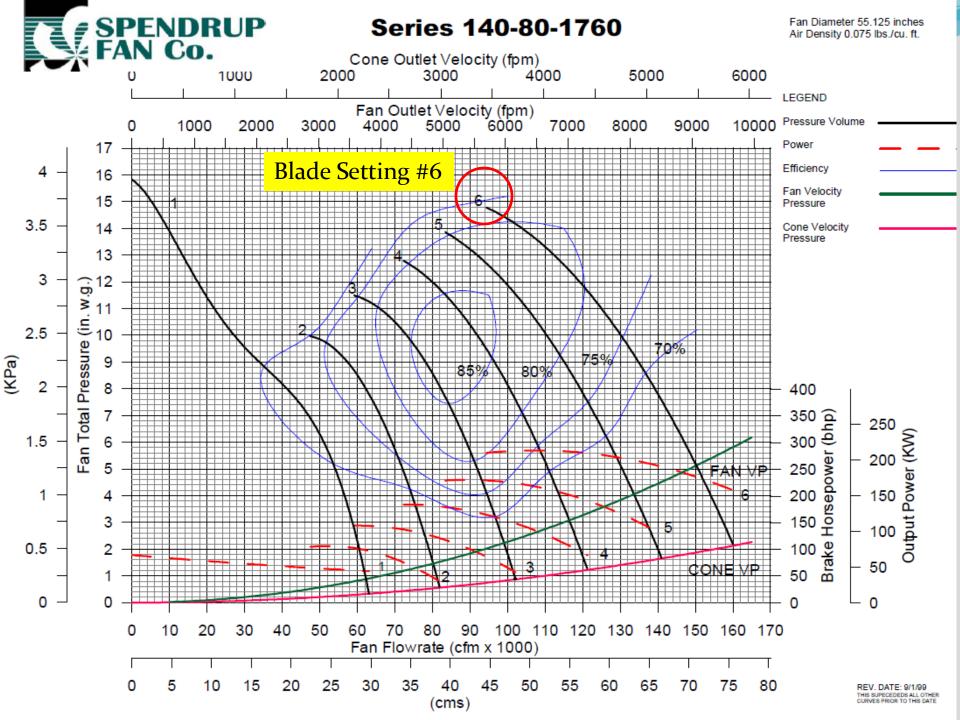
- 7 shaft will ventilate all pump station north of 2 Main East (including 3 Shaft, 5 shaft and By Pass pump stations).
- 2. 8 shaft will be used to ventilate the south (LW and Panels).


Ventilation Changes:

- Install one set of airlock doors south of 5 shaft.
- 2. Close the regulator at 3 Shaft pump station regulator.
- *3. Jeep door may be installed prior to the 5 shaft pump station.*
- 4. 5 Shaft will act as an exhaust shaft.




Scenario 1, 5 Shaft Fan Off, Booster



Scenario 1, 5 Shaft Fan Off, Booster

Scenario 2, Use Main Shop Air

312 💌 🖽 🖗	Favourite Air Type	Location				Present Model Q (m ³ /s)			Scenario Q (m ³ /s)		-		
			Fres	sh Air, 592	S , 133	xc		96.7			119.4		
		544 E		10 HC	3		6.5			1	26.5		
6 - **7 -	Fresh Air from	n 473		9 HC	ſ			2.4		8.5		5	
	1			8 HC	r		11.0			1 24.0			
	Bores to 4 &	z 6 Shaft	Set-u	ip Room (I	Regula	tor)		9.9			9.0)	
				LW			۷	42.1			40)	
	LW to 9 Sha			9 Sha	ft		(94.6			93.	8	
	<mark>11 нс</mark> 5 Shaft lower Saving: \$30,		Pressure In.w.g	11 Booste 10 rpm 90 9 Duty F 8 Quanti 7 Efficie 6 Power	Combin r Fan 140 %, 1584 r TP= 2.5 In ty 139.9 l ncy 56.6 9 139.7 hp \$57,622	-80-176 pm .w.g, cft3/mil	50	94		126	141	157	
	h = h = h = h	·	4			Qua	antity kft	3/min					

-FMC

Scenario 4, Changing Blade Setting or RPM

• Currently 8 and 5 fans are on 4B-4S and 7 fan on 2B-2S blade setting. All the fans are operating at 100% rpm (710 rpm).

Fan	Blade Setting	Static Pressure(kPa)	Quantity (m ³ /s)
8 Shaft	4B - 4S	1.7	206.2
5 Shaft	4B - 4S	1.7	210.8
7 Shaft	2B – 2S	1.8	166.0
Total			583.0

Scenario 4, All fans Set to 85% rpm

• The PQ results show that 5 and 8 shaft fans are fighting to overcome the pressure.

Followings are the advantages of installing VFD on surface fans.

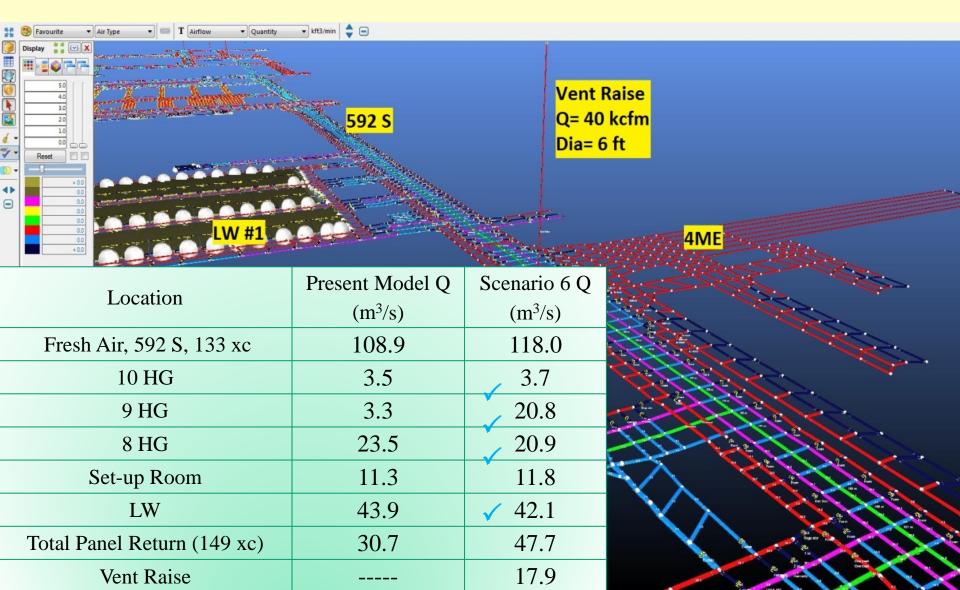
- Adjusting the frequency to reduce the operating cost (lowering down the speed in off shift/maintenance).
- ii. Increases the safety by being more flexible in case of emergency. Forexample increase the 8 shaft speed to ventilate the 5 shaft pump stationin case of losing 5 shaft fan.
- iii. Capable of over speeding the motors.
- iv. Set the blades on high setting and slow it down to reduce the operating cost. In this case the fan is capable of pushing more air by increasing the frequency at any time.

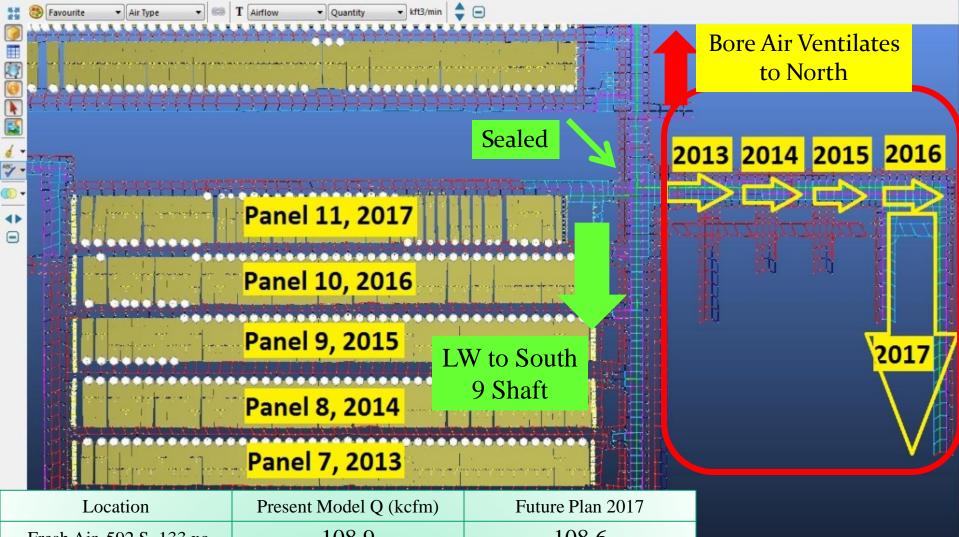
Scenario 4, All fans Set to 85% rpm

C

Fan		rpm	Static Pre	ssure (kPa)	Quantity	(m ³ /s)
i an	Present	rpm	Present	Predicted	Present	Predicted
8 Shaft	710	600	1.7	1.2	206.2	186.0
5 Shaft	710	600	1.7	1.3	210.8	177.7
7 Shaft	710	600	1.8	1.4	166.0	139.6
Total					583.0	502
40%		Loca	tion	Present Model Q (m ³ /s)	Scenario 4 Q (m ³ /s)	
Opera	<u> </u>	Fresh Air, 5	92 S, 133 xc	109	96	
Co	st	10 H	HG	10	8	
Reduc	tion	9 F	łG	9	7	
		8 F	łG	15	13	
		Set-up Room	(Regulator)	20	17	
		LV	N	41	35 🗙	
		9 Sł	naft	92	76	

-FMC


Scenario 6, Sinking a Vent Raise


- The vent raise has been sunk in southern part of the mine (helps 4&6 Shafts).
- Current Blade settings.
- Mining Cost: \$600/m, fully reinforced concrete. Total: \$3,000,000
- Optimized Size: 2m in dia, $\Delta p=600$ Pa, Q=30 m³/s

Scenario 6, Sinking a Vent Raise

The 5 Shaft blades setting can be lower to 2B - 2S to reduce the operating cost.

FMC

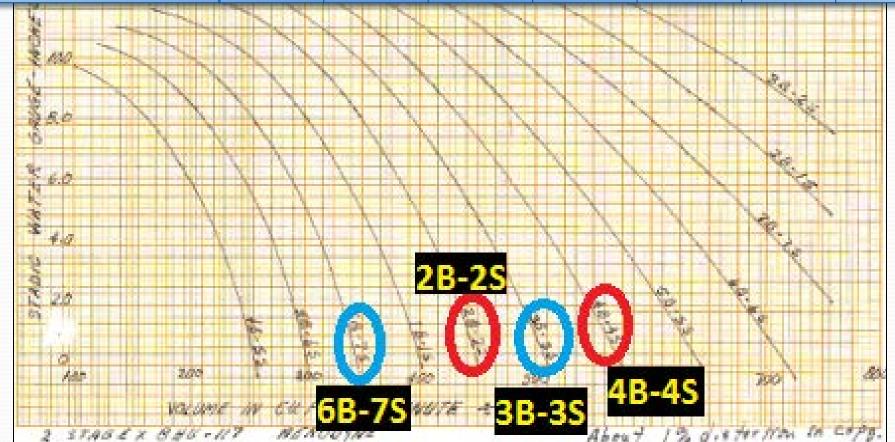
Location	Flesent Model Q (kcmi)	Future Flair 2017
Fresh Air, 592 S, 133 xc	108.9	108.6
Active Bore Miner #1	7.6	20.4
Active Bore Miner #2	23.5	21.8
Set-up Room	11.3	
LW	43.9	49.7
Total Panel Return to North	30.7	44.7

Conclusion and Recommendations

Quick Changes:

- Lower 8 and 7 Shafts Blade Setting. Savings: \$60,000/yr, similar Q.
- Shop Air, 10 more m^3/s .

Long Term:


- VFDs (more studies).
- Booster Fan in the Return (Needs Approval).

• Lower 8 and 7 Shafts Blade Setting

FMC

SH	Blade S	Setting	Airflow(m ³ /s)		Vibrati	on(m/s)	Pressur	Amp			
ЯП	Previous	Current	Previous	Current	Previous	Current	Previous	Current			
8	4B-4S	3B-3S	209	184	0.06	0.04	1.7	1.5	12		
5	4B-4S	4B-4S	202	204	0.06	0.06	1.7	1.7	3		
7	2B-2S	6B-7S	160	125	0.08	0.05	1.6	1.3	24		
Total			571	513					39		

Future Work

C

- Rerouting SHOP air back to the fresh air.
- VFDs (Long Term)

Acknowledgments:

- FMC Engineering Department, Rich Kramer
- Stewart Gillies
- NIOSH