geotechnical risk management Featured Items
Publication Event

Managing geotechnical risk in multi-pit operations, MGR 2019: Proceedings of the First International Conference on Mining Geomechanical Risk, MGR 2019

Rio Tinto Iron Ore operates 16 different mine operations in the Pilbara region of Western Australia. Across these operations, there could be more than 100 operational open pits at any given time. This poses a considerable challenge for the effective management of geotechnical risks with finite resources. There are also a number of external legislation and internal compliance requirements that need to be adhered to. A number of standardised systems and tools have been developed by the geotechnical teams to manage the geotechnical risks and this paper introduces the different components of Rio Tinto Iron Ore’s geotechnical management System (GMS). The GMS covers the complete process, from the geotechnical design of a slope, through implementation to verification of performance and feedback to the design engineer. The focus of the paper will be on the Geotechnical Risk and Hazard Assessment Management System (GRAHAMS) which is used to assess and document the safety and economic geotechnical risk assessments of different slope areas. A number of reports and visual summaries of the risk assessments are available in the system, offering leaders the opportunity to identify areas of elevated risk and allocate resources accordingly. Details of realised risks (geotechnical hazards) are also captured and GRAHAMS provides a process to communicate the hazard and relevant controls to operational personnel. The GRAHAMS system was recently enhanced, moving from a Microsoft Access front-end to a web-based platform. This will enable a number of system improvements to further increase its effectiveness.

geotechnical risk management geotechnical management system risk assessments multi-pit operations
Publication Event

The role of the geotechnical model for rapid integration in managing operational geotechnical risk, MGR 2019: Proceedings of the First International Conference on Mining Geomechanical Risk, MGR 2019

AngloGold Ashanti (AGA) has developed a concept to integrate geotechnical input into long-term mine planning using a ‘block model approach’ referred to as a geotechnical model for rapid integration (GMRi). The GMRi is a simple spatial collection of rock mass data integrated with empirical evaluations, numerical modelling results and monitoring data for a specific mine plan. In this paper, the value of using the GMRi to manage geotechnical risk and identify opportunities associated with ground support design, stress-induced damage, design stope spans and total extraction is demonstrated. The GMRi concept allows for the rapid evaluation of spatially distributed geotechnical data and identifies areas of risk and opportunity, demonstrated at two recent underground studies completed at AGA’s Australian operations.

rock mass model geotechnical block model GMRi geotechnical risk management